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Abstract. In this paper we construct extrapolated multirate discretization methods that
allows one to efficiently solve problems that have components with different dynamics. This ap-
proach is suited for the time integration of multiscale ordinary and partial differential equations
and provides highly accurate discretizations. We analyze the linear stability properties of the mul-
tirate explicit and linearly implicit extrapolated methods. Numerical results with multiscale ODEs
illustrate the theoretical findings.
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1. Introduction. In this study we develop multirate time integration schemes
using extrapolation methods for efficient simulation of multiscale ODE and PDE
problems. In multirate time integration, the time step can vary across the solu-
tion components (e.g., spatial domain) and has to satisfy only the local stability
conditions, resulting in substantially more efficient overall computations. For PDEs
the methods discussed in this paper can be used in the method of lines (MOL)
framework, where the temporal and spatial discretizations are independent.

The development of multirate integration is challenging because of the consis-
tency and stability constraints that must be satisfied by the time-stepping schemes.
Engstler and Lubich [11] developed multirate schemes based on extrapolated for-
ward Euler methods (MURX). The components with slow dynamics are inactivated
at certain time levels, while the fast components are evaluated every time step. Our
work extends this strategy to extrapolated explicit and implicit compound multi-
rate steps. In this case the extrapolation procedure operates on multirate time
stepping schemes. The concept of multirate methods was introduced in such studies
as [26; 13; 16; 32], and more recent results are presented in [15; 22; 21; 2; 4; 27].
Multirate methods for conservative laws are developed in [4; 27; 7; 20; 33; 31] and
for parabolic equations using a locally self-adjusting multirate time-stepping scheme
in [29; 30].
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In this paper we are concerned with solving the following initial value problem,

y′(x) = f(x,y(x)) , x > x0 , y(x0) = y0 , y ∈ R
N with (1.1)

y = [y1 y2 . . . yM ]T , f(x,y) = [f1(x,y) f2(x,y) . . . fM (x,y)]T and

yr ∈ R
nr , fr : R

N+1 → R
nr , r = 1, . . . , M , and

M∑

r=1

nr = N ,

where y is the solution vector partitioned into components yr, r = 1 , . . . , M , that
have their own time scales. Among others, these types of problems occur naturally
in electric circuit simulations [2] and in problems using variable grid sizes [6]. We
seek to apply time discretization methods with a different time-step length for each
dynamic characteristic to (1.1). To this end we consider extrapolation methods
[9; 17; 18] with multirate explicit and implicit base schemes for time marching.
When solving space-/time-dependent PDEs in the method of lines framework, we
use f to represent the spatial discretization operator.

For simplicity, but without loss of generality, we consider the simplified two-scale
problem

{
y′(t) = f (x, y(x), z(x))
z′(t) = g (x, y(x), z(x))

[y(x0) z(x0)]
T

= [y0 z0]
T

, x > x0 , (1.2)

where y represents the slowly evolving components and z the fast ones. Form (1.1)
is obtained immediately by successive refinements of (1.2). We assume that such
partitions are relatively easy to obtain algorithmically. We illustrate such a multirate
strategy on a practical problem in Section 5.

Multirate methods are typically more efficient than the “classical” single-rate
methods by avoiding the global time-step restrictions imposed by stability or accu-
racy considerations. The efficiency gains can be accurately estimated if the com-
putational work in evaluating the individual components of f(x,y) is proportional
to nr, r = 1, . . . , M , which is typically the case in practice. For instance, if we
consider problem (1.2) with equally sized y and z components and with the fast
dynamics being five times faster than the slow dynamics, the computational cost
is about 66% less with a multirate scheme than with its corresponding single-rate
implementations.

The rest of this paper is organized as follows. In the next section we review the
extrapolation methods. In Sec. 3 we introduce several multirate base methods, the
main result of this paper. Linear stability of the proposed schemes is analyzed in
Sec. 4, and numerical examples are given in Sec. 5. We present our conclusions in
Sec. 6.

2. Extrapolation Methods. Extrapolation methods were introduced in their
present form by Gragg and Stetter [14] as a simple way to obtain high-order dis-
cretizations of initial value problems. Here we briefly describe the basic ideas be-
hind these methods. Consider a sequence ni of positive integers with ni < ni+1,
1 ≤ i ≤ E, and define the corresponding step sizes h1, h2, h3, . . . by hi = H/ni.
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T11

T21 T22

T31 T32 T33

· · · · · · · · · · · ·

p
p p + 1
p p + 1 p + 2
· · · · · · · · · · · ·

(a) Extrapolation (Tj,k) tableau (b) Orders for the extrapolation terms
Table 2.1

Tableaux with (a) the Tj,k solutions and (b) their corresponding orders.

Further, define the numerical approximation of (1.1) at x0 + H , using the step size
hi, by

Ti,1 := yhi
(x0 + H) , 1 ≤ i ≤ E . (2.1)

This approximation is obtained by using a base method. Let us assume that the
local error of the pth-order method used to solve (2.1) has an asymptotic expansion
of the form

y(x) − yh(x) = ep+1(x)hp+1 + · · · + eN (x)hN + Errh(x)hN+1 , (2.2)

where ei(x) are errors that do not depend on h and Errh is bounded for x0 ≤ x ≤
xend. By using E approximations to (2.1) with different hi’s, one can eliminate
the error terms in the local error asymptotic expansion (2.2) by employing the
same procedure as in Richardson extrapolation (see [17, Chap. II.9]). High-order
approximations of the numerical solution of (1.1-1.2) can be determined by solving
a linear system with E equations. Then the kth solution represents a numerical
method of order p + k − 1 [17, Chap. II, Thm. 9.1]. The most economical solution
to this set of linear equations is given by the Aitken-Neville formula [1; 23; 12]:

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

(nj/nj−1) − 1
, j = 1 . . . k. (2.3a)

If the numerical method (2.1) is symmetric, then the Aitken-Neville formula yields

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

(nj/nj−1)
2 − 1

, j = 1 . . . k. (2.3b)

Scheme (2.1), (2.3) is called the extrapolation method. For illustration purposes,
the Tj,k solutions can be represented in a Tableau (2.1). As can be seen from the
tableau, the method is represented by a sequence of consistent embedded methods
that can be used for step-size control and variable-order approaches. One has sev-
eral choices for the sequences nj, Deuflhard [8] however, showed that the harmonic
sequence nj = 1, 2, 3, . . . is the most economical, and this sequence therefore will
be used for the rest of this study.

The base methods are typically chosen to be low-order schemes with p = 1, 2 such
as explicit Euler, linearly implicit Euler, or trapezoidal rule [17]. Linearly implicit
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Euler is a linearization of the implicit Euler scheme. Under typical smoothness
assumptions, one has

yi+1 = yi + hf (yi+1) ,

≈ yi + h (J (yi+1 − yi) + f (yi)) ,

= yi + h (J (yi+1 − yi) + f (yi)) + O(h2) ,

where J is a consistent approximation to ∂f
∂y

(xi,yi). Then the linearly implicit Euler

method is given by

(I − hJ) (yi+1 − yi) = hf (xi,yi) . (2.4)

This method has been used in [9; 10] as the base method for solving stiff ODEs
of type (1.1) with the extrapolation method (2.1), (2.3).

Extrapolation methods can be easily parallelized. Notice that the terms in
the first column of Tableau 2.1, which represent the bulk of the computation, are
independent of each other [25; 3; 5] and have predictable costs. Utilizing these facts
yields robust implementations on current computational architectures by optimally
scheduling each tableau row to be solved on a given set of processing units. Moreover,
because of their simple construction, the extrapolation methods can easily provide
solutions with arbitrary orders of accuracy. Higher orders are obtained by computing
more entries in the tableau.

3. Multirate Base Methods. We consider three multirate base methods for
solving (1.2) with the extrapolation algorithm (2.1), (2.3). Our approach extends
trivially to general partitions such as (1.1). We begin with the m−rate multirate

explicit Euler method,

MREX :






yn+1 = yn + h f(yn, zn)

zn+ i

m

= zn+ i−1

m

+
h

m

g(Yn+ i−1

m

, zn+ i−1

m

) , i = 1, . . . , m ,
(3.1)

where m is a positive integer and Yn+ i

m

is an approximation of y at xn+ i

m

. For-
ward Euler is first-order accurate, and hence zeroth-order interpolation is suited to
approximate Y : Yn+ i

m

= yn or Yn+ i

m

= yn+1; by using the former, a more paral-
lelizable implementation may be obtained. The first-order interpolation can also be
considered: Yn+ i−1

m

= m−i+1
m

yn + i−1
m

yn+1, i = 1, . . . , m . Formally we have

Yn+ i−1

m

= yn , (3.2a)

Yn+ i−1

m

= yn+1 , (3.2b)

Yn+ i−1

m

=
m − i + 1

m

yn +
i − 1

m

yn+1 . (3.2c)

All three possibilities are considered in this study.
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2 3
2 3 4
· · · · · · · · · · · ·

1
1 2
1 2 3
· · · · · · · · · · · ·

(a) Local orders (b) Global orders
Table 3.1

Classical (a) local and (b) global orders for the extrapolation methods with first order base
methods.

The linearly implicit Euler method (2.4) can also be considered as a candidate
for the base methods used in the extrapolation procedure. In this case, two mul-
tirate methods are proposed: slowest-first and compound. The slowest-first m -rate
multirate linearly implicit method is given by

MRLIM#1 :






[
I − hfy(0) −hfz(0)
−hgy(0) I − hgz(0)

]
·

[
yn+1 − yn

zn+1 − zn

]
=

[
h f (yn, zn)
h g (yn, zn)

]
,

(
I − h

m
gz(0)

) (
zn+ i

m

− zn+ i−1

m

)
= h
m

g
(
Yn+ i−1

m

, zn+ i−1

m

)
,

i = 1, . . . , m ,

(3.3)

where the shorthand notation f{y ,z}(0) and g{y ,z}(0) denotes the derivatives eval-
uated at x0, that is, the beginning of the current extrapolation time step in (2.1).
Another strategy is to advance the solution components with their respective rates
leading to the compound m -rate multirate linearly implicit method :

MRLIM#2 :






[
I − hfy(0) −hfz(0)

−
h

m

gy(0) I −
h

m

gz(0)

]
·

[
yn+1 − yn

zn+ 1

m

− zn

]
=

[
h f (yn, zn)
h

m

g (yn, zn)

]
,

(
I − h

m
gz(0)

) (
zn+ i

m

− zn+ i−1

m

)
= h
m

g
(
Yn+ i−1

m

, zn+ i−1

m

)
,

i = 2, . . . , m .

(3.4)

Just as for the explicit case, in the last two schemes Yn+ i

m

is obtained from (3.2).

We propose to use the first-order accurate multirate schemes (3.1), (3.3), and
(3.4) as base methods in the extrapolation procedure. These methods can be shown
to possess a local error expansion of form (2.2) and therefore can be extrapolated
by using (2.1),(2.3a). It follows that the proposed extrapolated multirate methods’
orders of convergence are accurately captured in Table 3.1. This fact is also verified
experimentally in Sec. 4. In terms of the computational cost between (3.3) and (3.4),
method (3.4) has a slight advantage because the fast variables are evolved in one step
less. We note here the differences between the methods proposed in this study and
Engstler and Lubich’s explicit MURX [11] schemes. In our approach the variable
partition is performed ab initio, and each time step calculation is multirate in itself,
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whereas in MURX the slow computations cease upon reaching an error criterion. In
other words, MURX has a slow and a fast tableau, whereas the proposed multirate
schemes partition the very base method into slow and fast parts. The extrapolated
methods based on (3.1), (3.3), and (3.4) can easily scheduled on parallel machines,
as illustrated in [25; 5] because of their uniform structure.

Following [11] we note that by construction the extrapolation methods provide
automatic lower-order embedded methods, a fact also revealed by a quick inspection
of Tableaux 3.1. This can provide automatic error control mechanisms such as the
ones implemented in [11]. This aspect will not be further addressed in this study;
we refer the reader to [11] for more details instead.

Next we illustrate the theoretical linear stability and accuracy results on numer-
ical examples using the extrapolation scheme with base methods (3.1), (3.3), and
(3.4).

4. Linear Stability Analysis of the Extrapolated Multirate Methods.
Following the analysis done by Kværnø [21], we investigate the extrapolated schemes
with the base methods defined by (3.1) and (3.3) applied to the following generic
linear test problem,

(
ŷ(x)
ẑ(x)

)′

=

(
α11 α12

α21 α22

) (
ŷ(x)
ẑ(x)

)
=

(
f (ŷ(x), ẑ(x))
g (ŷ(x), ẑ(x))

)
,

where αij ∈ R. The system can be scaled to

(
y(x)
z(x)

)′

=

(
−1 ε
ω −m

)

︸ ︷︷ ︸
A

(
y(x)
z(x)

)
=

(
f (y(x), z(x))
g (y(x), z(x))

)
. (4.1)

In this scaling we assume for simplicity that m is an integer, and thus we obtain
the scale difference (m ) between the slow component, y, and the fast one, z. The
coupling between these two components is represented by ε and ω. System (4.1) is
stable if the real part of the eigenvalues of A is negative, which gives ωε ≤ m . In
addition, we assume that |ε| ≤ 1 and |ω| ≤ m , thereby guaranteeing that system
(4.1) has two distinct scales such as (1.1).

The transfer or stability function R(. . . hAij . . . ) for a numerical discretization
of (4.1) is defined by the quantity that verifies

(
yn+1

zn+1

)
= R(. . . hAij . . . )

(
yn

zn

)
.

In order for the discretization method to be stable, one needs to have the spectral
radius ρ(R(. . . hAij . . . )) ≤ 1. The stability functions of (3.1) and (3.3) can be easily
calculated. The stability function of the extrapolated method is calculated from the
extrapolation formula (2.3a) as [18, Chap. IV]:

Rj,k+1(. . . hAij . . . ) = Rj,k(. . . hAij . . . ) +
Rj,k(. . . hAij . . . ) − Rj−1,k(. . . hAij . . . )

(nj/nj−k) − 1
.
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We take a practical approach and ask the following question: How does the
stability region of a multirate method with ratio m applied to (4.1) compare to the
stability region of the single-rate method with the time-step length of the fastest
component (i.e., H/m )? In other words we look for the degradation or appreciation
in stability of the multirate method compared to the single-rate method. We note
that the multirate method is more efficient in this case because it takes fewer steps
on the slow components.

The stability analysis of the proposed methods is very tedious and complex, and
often we have not been able to obtain closed forms of the stability functions. We
therefore investigate numerically the linear stability properties. In particular, we
explore the stability of extrapolation method (2.1), (2.3a) with the multirate base
methods (3.1), (3.3), and (3.4) applied to problem (4.1). We further consider the
ratio m = 2 fixed and investigate the stability region (ρ(R) ≤ 1) in the hω-hε plane.

4.1. Linear Stability of the Extrapolated Multirate Explicit Euler
Method. In Figure 4.1 we show the stability regions for the extrapolated multirate
explicit method (3.1) for the extrapolation terms in positions T22 and T54, (see Ta-
ble 2.1). The single-rate stability regions are computed for a time step smaller than
the one considered for the multirate results by a factor of the scale ratio. In other
words, we expect the multirate methods to be stable if their slow components are
integrated with a time step larger by a factor given by the scale than the time step
that provides global stability (i.e., stability for the single-rate scheme). The stabil-
ity region of the multirate method is slightly degraded for T22 with (3.2a); however,
the linear interpolation (3.2c) seems to have a stabilizing effect, and for practical
purposes we consider that this reduction in the stability region is acceptable.

The lack of stability for the multirate scheme in T22 can be avoided by consider-
ing solutions given by off-diagonal extrapolation terms. Note that, for instance, T54

does not use approximation T11, and therefore the dominant high step-size compu-
tations in T54 yield a stable solution.

4.2. Linear Stability of the Extrapolated Multirate Linearly Implicit
Methods. We now explore the stability regions of the proposed implicit multirate
schemes (3.3) and (3.4). We have determined numerically that in the first column
of the extrapolation tableau the multirate implicit methods preserve the “uncon-
ditional” stability of the implicit base (single-rate) method; in other words, the
stability region extends to (∞,∞) and (−∞,−∞) in the hω-hε plane. In Figure
4.2 we show an analysis similar to the one done in the previous section. We have
explored the hω-hε plane at various scales; however, we have not found any unsta-
ble modes or configurations. In Figure 4.2 we illustrate the stability region of the
proposed multirate methods for |hω|, |hε| < 100.

5. Numerical Experiments with Extrapolated Multirate Methods. In
this section we illustrate numerical results obtained using the proposed methods. We
consider two problems: a multirate equivalent of the classical Prothero-Robinson [24]
and what is known as the inverter-chain problem [2].
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Fig. 4.1. Stability region (ρ(R)) for problem (4.1) with the explicit single rate (m = 1) method
(3.1) and the corresponding multirate (m = 4) methods for entries T22 and T54 in the extrapolation
tableau.

5.1. Modified Prothero-Robinson Problem. Consider the following linear
initial value problem,

(
ŷ(x)
ẑ(x)

)′

=

(
Γ ε
ε −1

) (
ŷ(x) − g(x)
ẑ(x) − g(ωx)

)
+

(
g(x)
g(ωx)

)′

,

(
ŷ(x0)
ẑ(x0)

)
=

(
g(x0)
g(ωx0)

)
,

where g is a known function. This problem was adapted to vector form [2] from the

scalar Prothero-Robinson [24; 18] test problem. The exact solution is [ŷ(x) ẑ(x)]
T

=

[g(x) g(ωx)]T . This form allows us to control the stiffness, coupling, and scale
through Γ, ε, and ω, respectively.

We perform the following change of variables:

(
ŷ(x)
ẑ(x)

)
=

(
−1 + y2(x)
−2 + z2(x)

)
,

(
ŷ(x)
ẑ(x)

)′

=

(
2y(x)y′(x)
2z(x)z′(x)

)
,

(
y(x0)
z(x0)

)
=

( √
1 + g(x0)√
2 + g(ωx0)

)
.

The problem in y and z becomes nonlinear; and if g(x) = cos(x), the following
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Fig. 4.2. Stability region (ρ(R)) for problem (4.1) with the implicit single-rate (m = 1)
methods (3.3) and (3.4) and the corresponding multirate (m = 4) methods for entries T22 and T54

in the extrapolation tableau. The bottom two rows are methods using (3.3) and (3.4) with time
step h.

problem is obtained:

(
y(x)
z(x)

)′

=

(
Γ ε
ε −1

) ( (
−1 + y2 − cos(x)

)
/(2y)(

−2 + z2 − cos(ωx)
)
/(2z)

)
−

(
sin(x)/(2y)

ω sin(ωx)/(2z)

)
.

(5.1a)

The exact solution of (5.1a) is given by given by

(
y(x)
z(x)

)
=

( √
1 + cos(x)√
2 + cos(ωx)

)
(5.1b)

and represented in Figure 5.1. We refer to problem (5.1) as KPR.
The theoretical findings from the preceding sections are illustrated on the KPR

problem (5.1) discretized by using extrapolation procedure (2.1), (2.3a) with base
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Fig. 5.1. The exact solution of the modified nonlinear Prothero-Robinson equation (5.1) with
ε = 0.5, Γ = −2.0, ω = 20.0 (left) and the observed numerical local discretization order of the
extrapolation method (2.1), (2.3a) with the multirate (two-rate (m = ω = 20)) base method.

methods (3.1), (3.3), and (3.4). The experiments consist in integrating the KPR
problem with successively smaller steps H . We begin by exploring the consistency of
the proposed methods and set up an experiment using ε = 0.5, Γ = −2.0, ω = 20.0.
The multirate schemes use a rate of m = ω = 20. The observed orders based on
the numerical error in L1 and L2 norms are presented in Figure 5.1 and confirm the
theoretical expectations as discussed in Section 2.

The accuracy and efficiency of the multirate methods are explored in three
parameter settings: nonstiff, stiff, and high frequency. The last setting is used to
explore a case in which the scale ratio is higher than the considered rate. The errors
are computed by using the exact solution at the final time T = 0.3 in the L2 norm.

The nonstiff case. In Table 5.1 we show the errors for KPR with Γ = −2.0,
ω = 5, and ε = 0.05 using the single rate explicit scheme (3.1) with H = 0.01 and
multirate with m = 5, H = 0.05. The multirate strategy has a smaller computational
cost (66% less work) and provides the same level of accuracy. One conclusion from
our experiments is that the slow interpolation scheme does not seem to affect the
stability of the solution, albeit some theoretical evidence indicates that one should
use either (3.2b) or (3.2c).

Table 5.1

Errors for the nonstiff (Γ = −2.0e + 00, ω = 5.0e + 00, ε = 5.0e − 02) KPR problem at the
final time (T = 0.3) for extrapolation terms up to order five, solved with |SR, H = 0.01 |m = 5,
H = 0.05 | using the explicit method (3.1) with slow interpolation (3.2a).

|7.2e-3|7.6e-3|
|3.6e-3|3.8e-3| |4.3e-5|4.6e-5|
|2.4e-3|2.5e-3| |1.4e-5|1.5e-5| |2.3e-7|2.9e-7|
|1.8e-3|1.9e-3| |7.0e-6|7.5e-6| |5.7e-8|7.2e-8| |8.3e-10|2.1e-9|
|1.4e-3|1.5e-3| |4.2e-6|4.5e-6| |2.3e-8|2.9e-8| |1.6e-10|4.1e-10| |3.3e-12|2.0e-11|

The high-frequency case. In the high-frequency scenario we consider Γ = −2.0e+
02, ω = 3.0e + 01, ε = 5.0e − 02, and use the single-rate explicit scheme (3.1) with
H = 0.1 and H = 0.02 and multirate with m = 5, H = 0.1. Several aspects should
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be noticed in the results presented in Table 5.2: The single-rate result with H = 0.1
is unstable (the error is growing). The single rate with H = 0.02 is stable; however,
it yields comparable results with the multirate scheme using H = 0.1 that requires
66% fewer computations than does the stable single-rate method. Moreover, all the
diagonal terms are unstable. This aspect results from the fact that term T11 is not
stable and therefore all the resulting computations become unstable (see [17; 18; 5]).
A simple solution to circumvent this problem is to compute only the off-diagonal
extrapolation terms.

Table 5.2

Errors for the high-frequency (Γ = −2.0e + 02, ω = 3.0e + 01, ε = 5.0e − 02) KPR problem
at the final time (T = 0.3) solved with |SR, H = 0.1 |SR, H = 0.02 |m = 5, H = 0.1 | using the
explicit method (3.1) with slow interpolation (3.2a). Term T55 =|1.3e+8|1.1e+3|5.3e+0|.

|8.5e+1|7.2e+0|7.2e+0|
|2.4e+1|1.3e-2|1.3e-2| |7.1e+3|8.8e+4|5.2e+1|
|1.0e+3|5.6e-3|5.8e-3| |1.1e+5|1.3e+2|8.9e-2| |5.7e+5|4.2e+3|5.7e+1|
|1.0e+2|4.1e-3|4.3e-3| |9.3e+4|4.9e-4|4.1e-4| |2.7e+6|1.8e+3|7.8e-3| |9.7e+6|7.5e+3|1.1e+1|
|7.2e+0|3.2e-3|3.4e-3| |3.1e+4|2.4e-4|2.4e-4| |3.7e+6|1.4e-4|1.5e-5| |4.5e+7|2.8e+0|3.5e-2|

The stiff case. In Table 5.3 we show the errors for the KPR problem with
Γ = −2.0e + 05, ω = 2.0e + 01, ε = 5.0e − 01 using the single-rate explicit scheme
(3.3) with H = 0.025 and multirate with m = 4, H = 0.1. With direct linear algebra
methods or known Jacobian, the multirate strategy has a smaller computational
cost (60% less work) and provides a more accurate solution. Both implicit methods
(3.3) and (3.4) give similar results, and we therefore present only the former. For
high-order approximations and very stiff problems one should use only off-diagonal
extrapolation terms for computation [18; 5].

Table 5.3

Errors for the stiff (Γ = −2.0e + 05, ω = 2.0e + 01, ε = 5.0e − 01) KPR problem at the final
time (T = 0.3) solved with |SR,H = 0.025 |m = 4,H = 0.1 | using the linearly implicit method
(3.3) with slow interpolation (3.2a).

|8.2e-2|8.5e-2|
|3.0e-2|3.1e-2| |1.9e-2|1.3e-2|
|1.8e-2|1.8e-2| |5.0e-3|5.1e-3| |1.3e-3|1.2e-3|
|1.3e-2|1.3e-2| |2.7e-3|2.7e-3| |3.3e-4|2.7e-4| |9.6e-4|5.5e-5|
|9.7e-3|9.9e-3| |1.6e-3|1.7e-3| |9.6e-5|9.7e-5| |5.9e-5|1.9e-5| |3.0e-4|9.7e-6|

The KPR problem provides a controlled and idealized approach that illustrates
the properties and robustnes of multirate methods. We next present experiments
with a practical problem.

5.2. Inverter-Chain Problem. Consider the inverter-chain problem [2; 28]:

y′
j(t) = UOP − yj(t) − ΥF (yj−1(t)), yj(t))) , j = 1, . . . , n , 0 ≤ t ≤ T ,

F (u, v) = max (u − Uthres, 0)
2
− max (u − v − Uthres, 0)

2
,

(5.2a)
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Fig. 5.2. Solution of the inverter chain problem (5.2) at (top) t = 15 s, (middle) t = 60 s,
(bottom) t = 120 s for Υ := 100, respectively.

yj(0) =

{
6.247 · 10−3, j even
5, j odd

, y0(t) =






t − 5, 5 ≤ t ≤ 10
5, 10 ≤ t ≤ 15
5
2 (17 − t), 15 ≤ t ≤ 17
0, otherwise

, (5.2b)

with the following parameters: n = 500 inverters, UOP = 5, Uthres = 1, and T = 120
seconds. The Υ coefficient determines whether the problem is relatively stiff (Υ :=
100) or nonstiff (Υ := 1). The solution at t = 15 s, t = 60 s, t = 120 s is illustrated in
Figure 5.2. A detailed analysis of this problem in the multirate context can be found
in [19; 28; 2]. In this setting, the inverter-chain problem models the propagation of a
signal that is injected through the first invertor after five seconds into the simulation
and completely removed after 17 seconds (5.2b). This signal propagates through the
chain reaching the last invertor after about 120 seconds. We note that we have
reduced the final time from T = 130 s in [28] in order to prevent the signal from
exiting the domain. The numerical error is estimated by using a reference run with
relatively small time step. In every instance we estimate the error at the final time
in L2-norm. We follow [2] and set the fast time scale to be adaptively selected
based on the magnitude of the right-hand side (RHS) of ODE (5.2), specifically
|RHS{(5.2a)}| < 0.05. In this particular setting we obtain on average about 60
invertors in the fine time scale, which represents about 12% of total invertors. This
region is represented in Figure 5.2 with a solid line and shadowed background at
different times. We note that the fine region can be further reduced by coarsening
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Table 5.4

Tableau of errors corresponding to different extrapolation terms for the nonstiff (Γ = 1)
inverter-chain problem at the final time (T = 120) solved with (a) the single-rate linear implicit
method using a time step of H = 0.005, (b) multirate m = 5, H = 0.02, and (c) m = 20, H = 0.1.
The cost is an estimation based on the number of gridpoints in their respective time scale (5.3):
multirate work + single-rate work = total work (K=103).

8.2e-1
4.0e-1 5.1e-3
2.6e-1 1.7e-3 2.1e-5

5.9e-1
2.9e-1 3.4e-3
1.9e-1 1.1e-3 1.1e-5

Work: 0 + 12,000K = 12,000K Work: 1,800K + 2,640K=4,440K
(a) Single-rate H = 0.005 (b) Multirate m = 5, H = 0.02

4.2e-1
2.1e-1 9.9e-3
1.4e-1 3.2e-3 2.5e-5

Work: 1,440K + 528K=1,968K
(c) Multirate m = 20, H = 0.1

the time grid in the middle of the traveling signal.

We estimate the work involved in integrating the solution to the final time by
the number of invertors in each scale (denoted here as nfast and nslow) and their
corresponding computational cost per step:

estimated work =
T

H/m
nfast +

T

H
nslow , n = nfast + nslow . (5.3)

This metric is used to compare the computational cost of extrapolation methods,
and it should be interpreted termwise in the extrapolation tableau. The difference
between single-rate and multirate schemes appears only in the base method. We
therefore claim that this criterion is a fair estimate of the total work that avoids
issues related to particular implementations or architectures.

In Table 5.4 we show the numerical errors observed when solving the nonstiff
invertor-chain problem corresponding to extrapolation terms up to order three, and
using the single-rate, linearly implicit method with H = 0.005 and multirate scheme
(3.3) with m = 5, H = 0.02, and m = 20, H = 0.1. All three methods exhibit similar
error levels but significantly different estimated computational costs. The multirate
methods are clearly superior in terms of efficiency with a speedup of almost six times
for m = 20.

The numerical errors for the stiff invertor-chain problem are shown in Table 5.5,
when using the single-rate extrapolated linearly implicit method with H = 0.0005
and multirate scheme (3.3) with m = 10, H = 0.01, and m = 20, H = 0.01.
Just as in the nonstiff case, significant computational work can be saved by using
multirate schemes. We remark that using a larger time-step than considered in our
experiments leads to nonlinear instabilities in the extrapolation methods in general
because of discontinuities in the original problem.

13



Table 5.5

Tableau of errors corresponding to different extrapolation terms for the stiff (Γ = 100)
inverter-chain problem at the final time (T = 120) solved with (a) the single-rate extrapolated
linear implicit method using a time step of H = 0.0005, (b) multirate m = 10, H = 0.01, and (c)
m = 20, H = 0.01. The work is based on (5.3): multirate work + single rate work = estimated
total work (K=103).

4.3e-1
2.1e-1 1.3e-3
1.4e-1 5.1e-4 8.7e-5

1.3e-1
1.3e-1 9.0e-3
1.3e-1 3.4e-3 4.0e-4

Work: 120,000K Work: 7,200K+5,280K=12,480K
(a) Single-rate H = 0.0005 (b) Multirate m = 10, H = 0.01

1.3e-1
1.3e-1 2.1e-3
1.3e-1 7.1e-4 8.2e-6

Work: 14,400K+5,280K=19,680K
(c) Multirate m = 20, H = 0.01

In all our numerical experiments, we note that multirate schemes perform better
than their single-rate counterparts. The optimal choice of rate and terms resolved
in the extrapolation tableau is problem dependent and an open research problem
that we do not address in this study.

6. Concluding Remarks. Multirate methods are effective schemes for solving
multiscale problems. In this manuscript we present extrapolated multirate implicit
and explicit discretization methods that allow us to efficiently solve problems that
have multiple scales. We propose two extrapolation methods that are based on
multirate forward and linearly implicit Euler schemes. These methods have a very
small implementation cost small and can easily reach high orders of accuracy.

The extrapolation method by itself represents a sequence of embedded methods,
which can be used for step-size control and variable order approaches because of their
trivial extension to higher orders. Näıve implementations of extrapolation methods
are typically less efficient than Runge-Kutta or linear multistep schemes. However,
the extrapolation methods can be parallelized very easily [25]. Each entry in the
first extrapolation tableau column (Ti,1) can be computed independently. Moreover,
the cost is linearly increasing, and thus each entry can be optimally scheduled on
multiprocessor or multicore architectures. This approach could lead to more efficient
overall implementations. All these features are inherited by our multirate extensions
as well.

The extrapolated multirate forward Euler method shows only a slight degra-
dation of the linear stability region. In practice, however, we consider that the
increased efficiency of the multirate method outweighs this minor drawback. This
aspect has not been observed in our numerical experiments.

Through the numerical investigation of the linear stability we determine that the
extrapolated multirate linearly implicit method performs well for nonstiff problems
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and for stiff problems with relaxed coupling among components.
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